|
|
Characterization of specific miRNAs in acute monocytic leukemia |
LIU Jinli1, LIU Shuge2, XIONG Qian2, HAN Li3, LI Wei1, WANG Wanheng3, ZHANG Zhaojun1,2,4, LI Quanzhen1 |
1.School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035; 2.CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101; 3.Guoxinkaier Biotechnology of Shanxi, Taiyuan, 030006; 4.University of Chinese Academy of Sciences, Beijing, 100049
|
|
Cite this article: |
LIU Jinli,LIU Shuge,XIONG Qian, et al. Characterization of specific miRNAs in acute monocytic leukemia[J]. JOURNAL OF WEZHOU MEDICAL UNIVERSITY, 2016, 46(10): 703-708,715.
|
|
Abstract Objective: To characterize the molecular markers of microRNA (miRNA) with specifically high expression in acute monocytic leukemia. Methods: A batch of miRNAs was firstly screened out for their significantly higher expression in THP-1 (acute monocytic leukemia cell line) by analyzing high-throughput miRNA transcriptome sequencing data of THP-1 and K562 (chronic myeloid leukemia cell line). These miRNAs were further tested in the THP-1 and K562 cell line by quantitative real-time PCR (qRT-PCR) to obtain the specifically high expressed miRNAs in THP-1 cell line. Finally, these screened miNRAs were verified in bone marrow samples of acute monocytic leukemia patients by qRT-PCR. The finally verified miRNAs could serve the candidates for clinical diagnosis of this disease in the future. Results: Three miRNAs that are specifically highly expressed in acute monocytic leukemia including let-7d-5p, miR-221-3p and miR-222-3p were characteried. Conclusion: By integrating the bioinformatics analysis and verification in cell lines and patient bone marrow samples, we finally characterized 3 miRNAs as potential molecular diagnostic markers in acute monocytic leukemia.
|
Received: 26 February 2016
|
|
|
|
|
[1] ESTEY E, D HNER H. Acute myeloid leukaemia[J]. Lancet, 2006, 368(9550): 1894-1907.
[2] LOWENBERG B, DOWNING J R, BURNETT A. Acute myeloid leukemia[J]. N Engl J Med, 1999, 341(14): 1051-1062.
[3] MI S, LU J, SUN M, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia[J]. Proc Natl Acad Sci U S A, 2007, 104(50): 19971-19976.
[4] BARTEL D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
[5] CHENG A M, BYROM M W, SHELTON J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis[J]. Nucleic Acids Res, 2005, 33(4): 1290-1297.
[6] CALIN G A, CROCE C M. MicroRNA signatures in human cancers[J]. Nat Rev Cancer, 2006, 6(11): 857-866.
[7] ESQUELA-KERSCHER A, SLACK F J. Oncomirs-microRNAs with a role in cancer[J]. Nat Rev Cancer, 2006, 6(4): 259-269.
[8] MARTON S, GARCIA M, ROBELLO C, et al. Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis[J]. Leukemia, 2008, 22(2): 330-338.
[9] TAKADA S, YAMASHITA Y, BEREZIKOV E, et al. MicroRNA expression profiles of human leukemias[J]. Leukemia, 2008, 22(6): 1274-1278.
[10] KUCHENBAUER F, MORIN R D, ARGIROPOULOS B, et al. In-depth characterization of the microRNA transcriptome in a leukemia progression model[J]. Genome Res, 2008, 18(11): 1787-1797.
[11] XIONG Q, YANG Y, WANG H, et al. Characterization of miRNomes in acute and chronic myeloid leukemia cell lines [J]. Genomics Proteomics Bioinformatics, 2014, 12(2): 79-91.
[12] WANG H, HU H, ZHANG Q, et al. Dynamic transcriptomes of human myeloid leukemia cells[J]. Genomics, 2013, 102(4): 250-256.
[13] LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854.
[14] CALIN G A, CROCE C M. MicroRNA-cancer connection:the beginning of a new tale[J]. Cancer Res, 2006, 66(15): 7390-7394.
[15] CALIN G A, SEVIGNANI C, DUMITRU C D, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers[J]. Proc Natl Acad Sci U S A, 2004, 101(9): 2999-3004.
[16] FABBRI M, GARZON R, ANDREEFF M, et al. MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications[J]. Leukemia, 2008, 22(6): 1095-1105.
[17] GARZON R, CROCE C M. MicroRNAs in normal and malignant hematopoiesis[J]. Curr Opin Hematol, 2008, 15(4): 352-358.
[18] VASILATOU D, PAPAGEORGIOU S, PAPPA V, et al. The role of microRNAs in normal and malignant hematopoiesis [J]. Eur J Haematol, 2010, 84(1): 1-16.
[19] YENDAMURI S, CALIN G. The role of microRNA in human leukemia: a review[J]. Leukemia, 2009, 23(7): 1257-1263.
[20] CALIN G A, DUMITRU C D, SHIMIZU M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci U S A, 2002, 99(24): 15524-15529.
[21] FAYYAD-KAZAN H, BITAR N, NAJAR M, et al. Circulating miR-150 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia[J]. J Transl Med, 2013, 11(31): 1-10.
[22] MARCUCCI G, RADMACHER M D, MAHARRY K, et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia[J]. N Engl J Med, 2008, 358(18): 1919-1928.
[23] ZHU Y D, WANG L, SUN C, et al. Distinctive microRNA signature is associated with the diagnosis and prognosis of acute leukemia[J]. Med Oncol, 2012, 29(4): 2323-2331.
[24] ZHI F, CAO X, XIE X, et al. Identification of circulating microRNAs as potential biomarkers for detecting acute myeloid leukemia[J]. PLoS One, 2013, 8(2): e56718.
[25] MARCUCCI G, MAHARRY K S, METZELER K H, et al. Clinical role of microRNAs in cytogenetically normal acute myeloid leukemia: miR-155 upregulation independently identifies high-risk patients[J]. J Clin Oncol, 2013, 31(17):2086-2093.
[26] CAMMARATA G, AUGUGLIARO L, SALEMI D, et al. Differential expression of specific microRNA and their targets in acute myeloid leukemia[J]. Am J Hematol, 2010, 85(5): 331-339.
[27] VEERLA S, LINDGREN D, KVIST A, et al. MiRNA expression in urothelial carcinomas: Important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31[J]. Int J Cancer, 2009, 124(9): 2236-2242.
[28] GALARDI S, MERCATELLI N, GIORDA E, et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1[J]. J Biol Chem, 2007, 282(32): 23716-23724.
[29] LE SAGE C, NAGEL R, EGAN D A, et al. Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation[J]. EMBO J, 2007, 26(15): 3699-3708.
[30] MERCATELLI N, COPPOLA V, BONCI D, et al. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice[J].PLoS One, 2008, 3(12): e4029.
[31] ZHANG C, KANG C, YOU Y, et al. Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo[J]. Int J Oncol, 2009, 34(6): 1653-1660.
[32] PARK J K, KOGURE T, NUOVO G J, et al. miR-221 silencing blocks hepatocellular carcinoma and promotes survival[J]. Cancer Res, 2011, 71(24): 7608-7616.
[33] TAKAMIZAWA J, KONISHI H, YANAGISAWA K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival [J]. Cancer Res, 2004, 64(11): 3753-3756.
[34] PARK S M, SHELL S, RADJABI A R, et al. Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2[J]. Cell Cycle, 2007, 6(21): 2585-2590.
[35] SHELL S, PARK S M, RADJABI A R, et al. Let-7 expression defines two differentiation stages of cancer[J]. Proc Natl Acad Sci USA, 2007, 104(27): 11400-11405.
[36] BRUECKNER B, STRESEMANN C, KUNER R, et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function[J]. Cancer Res, 2007, 67(4): 1419-1423.
[37] LAWRIE C H, CHI J, TAYLOR S, et al. Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma[J]. J Cell Mol Med, 2009, 13(7): 1248-1260.
|
|
|
|