|
|
Effects of lycopene on bone mineral density and RANKL/OPG in chronic hypoxia modal mice |
1.Department of Gerontology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015; 2.Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015
|
|
Cite this article: |
ZHU Zaisheng1,DAI Shuang2,ZHENG Jingyu2, et al. Effects of lycopene on bone mineral density and RANKL/OPG in chronic hypoxia modal mice[J]. JOURNAL OF WEZHOU MEDICAL UNIVERSITY, 2015, 45(3): 185-.
|
|
Abstract Objective: To investigate the effects of lycopene on bone mineral density (BMD) and RANKL/OPG in chronic hypoxia (CH) modal mice. Methods: Twenty-four C57BL/6 male mice aged 8 weeks were randomly divided into three groups: Control group (C group, n=8) and CH group (CH group, n=8) and lycopene group (LCP group, n=8). Mice in CH and LCP were exposed in hypoxic environment, 8 h/day, 6 d/week while the C group lived in normal environment. At the end of 8 weeks, the serum levels of OC and TRACP-5b were measured by ELISA. The content of malondiadehyde (MDA) and the activity of superoxide dismutase (SOD) in shin-bone were analyzed using hydroxylamine assay and TBA colorimetry. The BMD of right femurs were detected by Hologic QDR-4500 bone densitometer. Histomorphology of bone tissue was observed with H.E stainin under light microscopy. The expressions of OPG and RANKL in bone tissue were detected with immunohistochemical technique and RT-qPCR respectively. Results: Firstly, Histologically, the volume of bones trabecular were decreased and the bones trabecular distribution were sparse, thinner and fracture in bone marrow in CH group. In comparison with the C group mice, BMD and serum OC level and the activities of SOD in bone (P<0.01) were decreased significantly in CH group mice, while the serum TRACP-5b level, MDA level in bone, the expression of RANKL protein and RANKL mRNA in bone and RANKL mRNA/OPG mRNA (P<0.01) were increased significantly. Secondly, LCP could partially improve the histomorphometric parameters in mice with CH. The serum TRACP-5b level, MDA level in bone, the expression of RANKL protein and mRNA in bone and RANKL mRNA/OPG mRNA in LCP group mice were lower significantly than the levels in HC group mice, while BMD and serum OC level and the activities of SOD in bone were higher (P<0.01 or P<0.05). Conclusion: Lycopene can reduce oxidative stress, regulate RANKL mRNA/OPG mRNA, decrease bone resorption and improve BMD in CH mice.
|
Received: 29 October 2014
|
|
|
|
|
|
|
|