[1] 孙玉希, 郭道军, 杜冬梅, 等. 甘氨酸分子的电子结构和生物活性研究[J]. 哈尔滨师范大学自然科学学报, 2003, 19 (1): 59-62.
[2] 徐伯华, 李来才, 唐作华. 甘氨酸与水分子相互作用的理论研究[J]. 原子与分子物理学报, 2003, 20(2): 275-279.
[3] 许良忠, 文丽荣. 过渡金属-甘氨酸配合物的IR光谱[J]. 光谱实验室, 2002, 19(5): 641-643.
[4] Chen M, Huang Z, Lin Z. Ab initio studies of gas phase as paragine conformers[J]. J Mol Struct (Theochem), 2005, 719 (1): 153-158.
[5] 王朝杰, 李永, 杨新宇, 等. 脯氨酸的构象及性质[J]. 物理化学学报, 2007, 23(3): 305-310.
[6] Csaszar AG. Conformers of gaseous glycine[J]. J Am Chem Soc, 1992, 114(24): 9568-9575.
[7] Tian SX, Sun X, Cao R, et al. Thermal stabilities of the microhydrated zwitterionic glycine: a kinetics and dynamics study[J]. J Phys Chem A, 2009, 113(2): 480-483.
[8] Michaux C, Wouters J, Jacquemin D, et al. A theoretical investigation of the hydrated glycine cation energetics and structures[J]. Chem Phys Lett, 2007, 445(1-3): 57-61.
[9] Alper JS, Dothe H, Lowe MA. Scaled quantum mechanical calculation of the vibrational structure of the solvated glycine zwitterion[J]. Chem Phys, 1992, 161(1-2): 199-209.
[10] Alparone A. Comparative study of CCSD(T) and DFT methods: electronic (hyper) polarizabilities of glycine[J]. Chem Phys Lett, 2011, 514(1-3): 21-25.
[11] Balabin RM. The first step in glycine solvation: the glycinewater complex[J]. J Phys Chem B, 2010, 114(46): 15075-15078.
[12] Ramaekers R, Pajak J, Lambie B, et al. Neutral and zwitter-ionic glycine. H(2)O complexes: A theoretical and matrix-isolation Fourier transform infrared study[J]. J Chem Phys,2004, 120(9): 4182-4193.
[13] Matei A, Drichko N, Gompf B, et al. Far-infrared spectra of amino acids[J]. Chem Phys, 2005, 316(1-3): 61-71.
[14] Godfrey PD, Brown RD. Shape of glycine[J]. J Am Chem Soc, 1995, 117(7): 2019-2023.
[15] Perdew JP, Ruzsinszky A, Tao J, et al. Prescription for the design and selection of density functional approximations:more constraint satisfaction with fewer fits[J]. J Chem Phys,2005, 123(6): 062201.
[16] Klimeš J, Michaelides A. Perspective: advances and challenges in treating van der Waals dispersion forces in densityfunctional theory[J]. J Chem Phys, 2012, 137(12): 120901-120912.
[17] Burke K. Perspective on density functional theory[J]. J Chem Phys, 2012, 136(15): 150901-150909.
[18] Cohen AJ, Paula MS, Yang WT. Challenges for density functional theory[J]. Chem Rev, 2012, 112(1): 289-320.
[19] Kaduk B, Kowalczyk T, Voorhis TV. Constrained density functional theory[J]. Chem Rev, 2012, 112(1): 321-370.
[20] 张颖, 徐昕. 新一代密度泛函方法XYG3[J]. 化学进展, 2012, 24(6): 1023-1037.
[21] Yanai T, Tew DP, Handy NC. A new hybrid exchange-cor-relation functional using the Coulombattenuating method(CAM-B3LYP)[J]. Chem Phys Lett, 2004, 393(1-3): 51-57.
[22] Rostov IV, Amos RD, Kobayashi R, et al. Studies of the ground and excited-state surfaces of the retinal chromophore using 5547-5555.
[23] Herrera B, Dolgounitcheva O, Zakrzewski VG, et al. Conformational effects on glycine ionization energies and dyson orbitals[J]. J Phys Chem A, 2004, 108(52): 11703-11708.
[24] Chaudhari A, Lee SL. Computational study of glycine(water)3 complex by density functional method[J]. Chem Phys, 2005, 310(1-3): 281-285.
[25] Bandyopadhyay P, Gordon MS. A combined discrete/con-tinuum solvation model: application to glycine[J]. J Chem Phys, 2000, 113(3): 1104-1109.
[26] Jensen JH, Gordon MS. On the number of water molecules necessary to stabilize the glycine zwitterion[J]. J Am Chem0020Soc, 1995, 117(31): 8159-8170.
|