[1] OLIVER J D. The biology of vibrio vulnificus[J]. Microbiol Spectr, 2015, 3(3): 1-10.
[2] ROLAND F P. Leg gangrene and endotoxin shock due to vibrio parahaemolyticus--an infection acquired in New England coastal waters[J]. N Engl J Med, 1970, 282(23): 1306.
[3] FARMER J J. Vibrio (“Beneckea”) vulnificus, the bacterium associated with sepsis, septicaemia, and the sea[J]. Lancet, 1979, 2(8148): 903.
[4] YUN N R, KIM D M, LEE J, et al. pH level as a marker for predicting death among patients with Vibrio vulnificus infection, South Korea, 2000-2011[J]. Emerg Infect Dis, 2015, 21(2): 259-264.
[5] WILLIAMS T C, FROELICH B A, PHIPPEN B, et al. Different abundance and correlational patterns exist between total and presumed pathogenic V. vulnificus and V. parahaemolyticus in shellfish and waters along the North Carolina coast[J]. FEMS Microbiol Ecol, 2017, 93(6).
[6] BAKER A C, TRINANES J, GONZALEZ E N, et al. Non-Cholera Vibrios: The microbial barometer of climate change [J]. Trends Microbiol, 2017, 25(1): 76-84.
[7] OLIVER J D. Vibrio vulnificus: death on the half shell. A personal journey with the pathogen and its ecology[J]. Microb Ecol, 2013, 65(4): 793-799.
[8] JONES M K, OLIVER J D. Vibrio vulnificus: disease and pathogenesis[J]. Infect Immun, 2009, 77(5): 1723-1733.
[9] LEE K J, KIM J A, HWANG W, et al. Role of capsular polysaccharide (CPS) in biofilm formation and regulation of CPS production by quorum-sensing in Vibrio vulnificus[J]. Mol Microbiol, 2013, 90(4): 841-857.
[10] GARRETT S B, GARRISON-SCHILLING K L, COOKE
J T, et al. Capsular polysaccharide production and serum survival of Vibrio vulnificus are dependent on antitermination control by RfaH[J]. FEBS Lett, 2016, 590(24): 4564-4572.
[11] KANG I H, KIM J S, KIM E J, et al. Cadaverine protects Vibrio vulnificus from superoxide stress[J]. J Microbiol Biotechnol, 2007, 17(1): 176-179.
[12] LOHINAI Z, KEREMI B, SZOKO E, et al. Bacterial lysine decarboxylase influences human dental biofilm lysine content, biofilm accumulation, and subclinical gingival inflam-mation[J]. J Periodontol, 2012, 83(8): 1048-1056.
[13] KIM J S, SUNG M H, KHO D H, et al. Induction of manganese-containing superoxide dismutase is required for acid tolerance in Vibrio vulnificus[J]. J Bacteriol, 2005, 187(17): 5984-5995.
[14] HORSEMAN M A, SURANI S. A comprehensive review of Vibrio vulnificus: an important cause of severe sepsis and skin and soft-tissue infection[J]. Int J Infect Dis, 2011, 15 (3): e157-166.
[15] PAJUELO D, HERNANDEZ-Cabanyero C, SANJUAN E, et al. Iron and Fur in the life cycle of the zoonotic pathogen Vibrio vulnificus[J]. Environ Microbiol, 2016, 18(11): 4005-4022.
[16] STEFANOVA D, RAYCHEV A, AREZES J, et al. Endogenous hepcidin and its agonist mediate resistance to selected infections by clearing non-transferrin-bound iron[J]. Blood, 2017, 130(3): 245-257.
[17] AREZES J, JUNG G, GABAYAN V, et al. Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus[J]. Cell Host Microbe, 2015, 17(1): 47-57.
[18] LEE K J, LEE M A, HWANG W, et al. Deacylated lipopolysaccharides inhibit biofilm formation by Gram-negative bac-teria[J]. Biofouling, 2016, 32(7): 711-723.
[19] WRIGHT A C, MORRIS J G JR. The extracellular cytolysin of Vibrio vulnificus: inactivation and relationship to virulence in mice[J]. Infect Immun, 1991, 59(1): 192-197.
[20] LEE S J, JUNG Y H, OH S Y, et al. Vibrio vulnificus VvhA induces NF-kappaB-dependent mitochondrial cell death via lipid raft-mediated ROS production in intestinal epithelial cells[J]. Cell Death Dis, 2015, 6: 1655.
[21] SONG E J, LEE S J, LIM H S, et al. Vibrio vulnificus VvhA induces autophagy-related cell death through the lipid raft-dependent c-Src/NOX signaling pathway[J]. Sci Rep, 2016, 6: 27080.
[22] LIU M, CROSA J H. The regulator HlyU, the repeat-in-toxin gene rtxA1, and their roles in the pathogenesis of Vibrio vulnificus infections[J]. Microbiologyopen, 2012, 1(4): 502-513.
[23] KWAK J S, JEONG H G, SATCHELL K J. Vibrio vulnificus rtxA1 gene recombination generates toxin variants with altered potency during intestinal infection[J]. Proc Natl Acad Sci U S A, 2011, 108(4): 1645-1650.
[24] KUO S Y, CHOU M C, LEE S L, et al. Vibrio vulnificus RtxA1 modulated calcium flux contributes reduced internalization in phagocytes[J]. Life Sci, 2015, 132: 55-60.
[25] KIM J R, CHA M H, OH D R, et al. Resveratrol modulates RTX toxin-induced cytotoxicity through interference in adhesion and toxin production[J]. Eur J Pharmacol, 2010, 642 (1-3): 163-168.
[26] GULIG P A, BOURDAGE K L, STARKS A M. Molecular pathogenesis of Vibrio vulnificus[J]. J Microbiol, 2005, 43: 118-131.
[27] LEE S J, JUNG Y H, OH S Y, et al. Vibrio vulnificus VvpE inhibits mucin 2 expression by hypermethylation via lipid raft-mediated ROS signaling in intestinal epithelial cells[J]. Cell Death Dis, 2015, 6: e1787.
[28] LEE M A, KIM J A, YANG Y J, et al. VvpM, an extracellular metalloprotease of Vibrio vulnificus, induces apoptotic death of human cells[J]. J Microbiol, 2014, 52(12): 1036-1043.
[29] KIM J A, PARK J H, LEE M A, et al. Stationary-phase induction of vvpS expression by three transcription factors: repression by LeuO and activation by SmcR and CRP[J]. Mol Microbiol, 2015, 97(2): 330-346.
[30] KIM H Y, AYRAPETYAN M, OLIVER J D. Survival of vibrio vulnificus genotypes in male and female serum, and production of siderophores in human serum and seawater[J]. Foodborne Pathog Dis, 2014, 11(2): 119-125.
[31] DUONG-NU T M, JEONG K, HONG S H, et al. All three TonB systems are required for vibrio vulnificus cmcp6 tissue invasiveness by controlling flagellum expression[J]. Infect Immun, 2015, 84(1): 254-265.
[32] GANDER R M, LAROCCO M T. Detection of piluslike structures on clinical and environmental isolates of Vibrio vulnificus[J]. J Clin Microbiol, 1989, 27(5): 1015-1021.
[33] SRIVASTAVA M, TUCKER M S, GULIG P A, et al. Phase variation, capsular polysaccharide, pilus and flagella contribute to uptake of Vibrio vulnificus by the Eastern oyster (Crassostrea virginica)[J]. Environ Microbiol, 2009, 11(8): 1934-1944.
[34] GOO S Y, LEE H J, KIM W H, et al. Identification of OmpU of Vibrio vulnificus as a fibronectin-binding protein and its role in bacterial pathogenesis[J]. Infect Immun, 2006, 74 (10): 5586-5594.
[35] LEE K J, LEE N Y, HAN Y S, et al. Functional characterization of the IlpA protein of Vibrio vulnificus as an adhesin and its role in bacterial pathogenesis[J]. Infect Immun, 2010, 78(6): 2408-2417.
[36] LEE N Y, LEE H Y, LEE K H, et al. Vibrio vulnificus IlpA induces MAPK-mediated cytokine production via TLR1/2 activation in THP-1 cells, a human monocytic cell line[J]. Mol Immunol, 2011, 49(1-2): 143-154.
[37] YILDIZ F H, VISICK K L. Vibrio biofilms: so much the same yet so different[J]. Trends Microbiol, 2009, 17(3): 109-118.
[38] WILLIAMS T C, AYRAPETYAN M, OLIVER J D. Molecular and Physical Factors That Influence Attachment of Vibrio vulnificus to Chitin[J]. Appl Environ Microbiol, 2015, 81 (18): 6158-6165.
[39] KIM S M, PARK J H, LEE H S, et al. LuxR homologue SmcR is essential for Vibrio vulnificus pathogenesis and biofilm detachment, and its expression is induced by host cells[J]. Infect Immun, 2013, 81(10): 3721-3730.
[40] KIM W B, LEE B C, CHOI S H. Vibrio vulnificus AphB is involved in interleukin-8 production via an NF-kappaB-dependent pathway in human intestinal epithelial cells[J]. Biochem Biophys Res Commun, 2012, 417(4): 1265-1270.
[41] JEONG H G, CHOI S H. Evidence that AphB, essential for the virulence of Vibrio vulnificus, is a global regulator[J]. J Bacteriol, 2008, 190(10): 3768-3773.
[42] MUKHERJEE D, PAL A, CHAKRARTY D, et al. Identification of the target DNA sequence and characterization of DNA binding features of HlyU, and suggestion of a redox switch for hlyA expression in the human pathogen Vibrio cholerae from in silico studies[J]. Nucleic Acids Res, 2015, 43(3): 1407-1417.
[43] PARK J H, LEE B, JO Y, et al. Role of extracellular matrix protein CabA in resistance of Vibrio vulnificus biofilms to decontamination strategies[J]. Int J Food Microbiol, 2016, 236: 123-129.
[44] HWANG J, KIM B S, JANG S Y, et al. Structural insights into the regulation of sialic acid catabolism by the Vibrio vulnificus transcriptional repressor NanR[J]. Proc Natl Acad Sci U S A, 2013, 110(30): E2829-2837.