[1] TANG M K, WONG A S. Exosomes: Emerging biomarkers and targets for ovarian cancer[J]. Cancer Lett, 2015, 367(1): 26-33.
[2] ZHANG H G, GRIZZLE W E. Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions[J]. Am J Pathol, 2014, 184(1): 28-41.
[3] BEACH A, ZHANG H G, RATAJCZAK M Z, et al. Exosomes: an overview of biogenesis, composition and role in ovarian cancer[J]. J Ovarian Res, 2014, 7: 14.
[4] LEE T H, D'ASTI E, MAGNUS N, et al. Microvesicles as mediators of intercellular communication in cancer——the emerging science of cellular 'debris'[J]. Semin Immunopathol, 2011, 33(5): 455-467.
[5] PAN B T, JOHNSTONE R M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor[J]. Cell, 1983, 33(3): 967-978.
[6] SATO-KUWABARA Y, MELO S A, SOARES F A, et al. The fusion of two worlds: non-coding RNAs and extracellular vesicles——diagnostic and therapeutic implications[J]. Int J Oncol, 2015, 46(1): 17-27.
[7] THERY C, OSTROWSKI M, SEGURA E. Membrane vesicles as conveyors of immune responses[J]. Nat Rev Immunol, 2009, 9(8): 581-593.
[8] BAIETTI M F, ZHANG Z, MORTIER E, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes[J]. Nat Cell Biol, 2012, 14(7): 677-685.
[9] HSU C, MOROHASHI Y, YOSHIMURA S, et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C[J]. J Cell Biol, 2010, 189(2): 223-232.
[10] MURALIDHARAN-CHARI V, CLANCY J W, SEDGWICK A, et al. Microvesicles: mediators of extracellular communication during cancer progression[J]. J Cell Sci, 2010, 123(Pt 10): 1603-1611.
[11] NABHAN J F, HU R, OH R S, et al. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein[J]. Proc Natl Acad Sci U S A, 2012, 109 (11): 4146-4151.
[12] COCUCCI E, RACCHETTI G, MELDOLESI J. Shedding microvesicles: artefacts no more[J]. Trends Cell Biol, 2009, 19(2): 43-51.
[13] ANDERSON H C, GARIMELLA R, TAGUE S E. The role of matrix vesicles in growth plate development and biomin-eralization[J]. Front Biosci, 2005, 10:822-837.
[14] MOREL O, TOTI F, HUGEL B, et al. Cellular microparticles: a disseminated storage pool of bioactive vascular effec-tors[J]. Curr Opin Hematol, 2004, 11(3): 156-164.
[15] VALENTI R, HUBER V, IERO M, et al. Tumor-released microvesicles as vehicles of immunosuppression[J]. Cancer Res, 2007, 67(7): 2912-2915.
[16] VAN DOORMAAL F F, KLEINJAN A, DI NISIO M, et al. Cell-derived microvesicles and cancer[J]. Neth J Med, 2009, 67(7): 266-273.
[17] CARMELIET P. Angiogenesis in life, disease and medicine [J]. Nature, 2005, 438(7070): 932-936.
[18] TARABOLETTI G, D'ASCENZO S, GIUSTI I, et al. Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH[J]. Neoplasia, 2006, 8(2): 96-103.
[19] SKOG J, WURDINGER T, VAN RIJN S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers[J]. Nat Cell Biol, 2008, 10(12): 1470-1476.
[20] WYSOCZYNSKI M, RATAJCZAK M Z. Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors[J]. Int J Cancer, 2009, 125(7): 1595-1603.
[21] CASTELLANA D, ZOBAIRI F, MARTINEZ M C, et al. Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: a role for activated fibroblasts and CX3CL1-CX3CR1 axis[J]. Cancer Res, 2009, 69(3): 785-793.
[22] XIAO D, BARRY S, KMETZ D, et al. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment[J]. Cancer Lett, 2016, 376(2): 318-327.
[23] KAPLAN R N, RIBA R D, ZACHAROULIS S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche[J]. Nature, 2005, 438(7069): 820-827.
[24] PEINADO H, ALECKOVIC M, LAVOTSHKIN S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET[J]. Nat Med, 2012, 18(6): 883-891.
[25] COSTA-SILVA B, AIELLO N M, OCEAN A J, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver[J]. Nat Cell Biol, 2015, 17(6): 816-826.
[26] ZOU W. Immunosuppressive networks in the tumour environment and their therapeutic relevance[J]. Nat Rev Cancer, 2005, 5(4): 263-274.
[27] VALENTI R, HUBER V, FILIPAZZI P, et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes[J]. Cancer Res, 2006, 66(18): 9290-9298.
[28] WHITESIDE T L. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes) [J]. Biochem Soc Trans, 2013, 41(1): 245-251.
[29] GRAVES L E, ARIZTIA E V, NAVARI J R, et al. Proinvasive properties of ovarian cancer ascites-derived membrane vesicles[J]. Cancer Res, 2004, 64(19): 7045-7049.
[30] ZHOU W, FONG M Y, MIN Y, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metas-tasis[J]. Cancer Cell, 2014, 25(4): 501-515.
[31] SAFAEI R, LARSON B J, CHENG T C, et al. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells[J]. Mol Cancer Ther, 2005, 4(10): 1595-1604.
[32] CHEN W X, LIU X M, LV M M, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs[J]. PLoS One, 2014, 9(4): e95240.
[33] TAKAHASHI K, YAN I K, WOOD J, et al. Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy[J]. Mol Cancer Res, 2014, 12(10): 1377-1387.
[34] KELLER S, KONIG A K, MARME F, et al. Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes[J]. Cancer Lett, 2009, 278(1): 73-81.
[35] VAKSMAN O, TROPE C, DAVIDSON B, et al. Exosome-derived miRNAs and ovarian carcinoma progression[J]. Carcinogenesis, 2014, 35(9): 2113-2120.
[36] 应翔, 吴小丽, 王昕婧, 等. 卵巢上皮癌细胞SKOV3通过分泌外泌体促进单核巨噬细胞分化为肿瘤相关巨噬细胞的研究[J]. 现代妇产科进展, 2015, 24(10): 726-729.
[37] FADEEL B, OTTOSSON A, PERVAIZ S. Big wheel keeps on turning: apoptosome regulation and its role in chemore-sistance[J]. Cell Death Differ, 2008, 15(3): 443-452.
[38] AU YEUNG C L, CO N N, TSURUGA T, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1[J]. Nat Commun, 2016, 7: 11150.
[39] TANG K, ZHANG Y, ZHANG H, et al. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles[J]. Nat Commun, 2012, 3: 1282.