LIN Huiyue,QIAN Kai,BAI Jiaxiu, et al. Study on circadian rhythms of olfactory response and its regulatory mechanisms in Spodoptera litura[J]. JOURNAL OF WEZHOU MEDICAL UNIVERSITY, 2017, 47(8): 553-560.
Abstract:Objective: To study circadian rhythms of olfactory response and its regulatory mechanisms in Spodoptera litura, providing new insight in controlling this pest. Methods: Electroantennogram (EAG) was used to determine the electrophysiological responses of S. litura to chemicals originated from sex pheromones and host plants at eight different time points during day, finding the circadian rhythms of EAG responses in S. litura and selecting out the compounds to which the moths strongly responded. Then the wind tunnel was used to measure the behavioral responses of S. litura to these compounds at the same five time points during the scotophase. In addition, the expression levels of genes regulating circadian rhythms and olfaction at the same time points were detected by the real-time fluorescence quantitative PCR (RT-qPCR) technique to reveal the molecular regulatory mechanism of olfactory circadian rhythms in S. litura. Results: The results showed that the strongest EAG responses of male S. litura to all tested plant odor compounds and sex pheromone components occurred after 3 hours and 9 hours in the dark, showing a bimodal pattern. A total of five compounds: Z9E12-14:OAc, Z9E11-14:OAc,
caryophyllene, linalool and phenylacetaldehyde were selected and tested in behavioral responses (wind tunnel). The behavioral responses of S. litura to the five chemicals at five time points during scotophase showed similar patterns to that obtained from the EAG tests. The expression levels of the most olfactory receptor and clock genes reached the peak after 3 and 9 hours in the dark, which is largely consistent with the circadian rhythms of olfactory responses in S. litura. Conclusion: The circadian rhythms of olfactory responses were consistent with those of expression levels of olfactory and clock genes in S. litura, suggesting that the circadian rhythms are probably essentially regulated by clock and olfactory genes.
[1] 王文栋, 梁辉, 朱晓苏, 等. 家蚕生物钟基因Bmcryl与Bmcry2的克隆及生物信息学分析[J]. 昆虫学报, 2011, 54(1):9-19.
[2] EBAN-ROTHSCHILD A, SHEMESH Y, BLOCH G. The colony environment, but not direct contact with conspecifics, influences the development of circadian rhythms in honey bees[J]. J Biol Rhythm, 2012, 27(3): 217-225.
[3] LONE S R, SHARMA V K. Or47b receptor neurons mediate sociosexual interactions in the fruit fly Drosophila melanogaster[J]. J Biol Rhythms, 2012, 27: 107-116.
[4] ZÁVODSKÁ R, FEXOVÁ S, VON WOWERN G, et al. Is the sex communication of two pyralid moths Plodia interpunctella and Ephestia kuehniella, under circadian clock regulation?[J]. J Biol Rhythm, 2012, 27(2): 206-216.
[5] 杜玉珍,童建. 生物钟的基因调控[J]. 生理科学进展, 2002, 33(4): 343-345.
[6] ALLADA R, WHITE N E, SO W V, et al. A mutant Drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless[J]. Cell, 1998, 93(5): 791-804.
[7] SHIRASU N, SHIMOHIGASHI Y, TOMINAGA Y, et al. Molecular cogs of the insect circadian clock[J]. Zool Sci,2003, 20(8): 947-955.
[8] MERLIN C, LUCAS P, ROCHAT D, et al. An antennal circadian clock and circadian rhythms in peripheral pheromone reception in the moth, Spodoptera littoralis[J]. J Biol Rhythm, 2007, 22: 502-514.
[9] KRISHNAN B, DRYER S E, HARDIN P E. Circadian rhythms in olfactory responses of Drosophila melanogaster [J]. Nature, 1999, 400(6742): 375-378.
[10] RYMER J, BAUERNFEIND A L, BROWN S, et al. Circadian rhythms in the mating behavior of the cockroach Leucophea maderae[J]. J Biol Rhythm, 2007, 22(6): 43-57.
[11] TANOUE S, KRISHNAN P, KRISHNAN B, et al. Circadian clocks in antennal neurons are necessary and sufficient for olfaction rhythms in Drosophila[J]. Curr Biol, 2004, 14(8): 638-649.
[12] MCDONALD M J, ROSBASH M. Microarray analysis and organization of circadian gene expression in Drosophila[J]. Cell, 2001, 107(5): 567-578.
[13] TAGHERT P H, SHAFER O T. Mechanisms of clock output in the Drosophila circadian pacemaker system[J]. J Biol Rhythm, 2006, 21(6): 445-457.
[14] 沈幼莲, 高扬, 杜永均. 植物气味化合物与斜纹夜蛾性信息素的协同作用[J]. 昆虫学报, 2009, 52(12): 1290-1297.
[15] SALEEMA M, HUSSAINA D, GHOUSEB G, et al. Monitoring of insecticide resistance in Spodoptera litura (Lepidoptera Noctuidae) from four districts of Punjab, Pakistan to conventional and new chemistry insecticides[J]. Crop Prot, 2016, 79: 177-184.
[16] 杜永均, 严福顺, 韩心丽, 等. 大豆蚜嗅觉在选择寄主植物中的作用[J]. 昆虫学报, 1994, 37(4): 385-392.
[17] 方宇凌, 张钟宁. 植物气味化合物对棉铃虫产卵及田间诱蛾的影响[J]. 昆虫学报, 2002, 45(1): 63-67.
[18] LETSOU A, BOHMANN D. Small flies-big discoveries: nearly a century of Drosophila genetics and development[J]. Dev Dynam, 2005, 232(3): 526-528.
[19] 王英, 司马杨虎, 宋艳, 等. 昆虫生物钟基因及其分子作用机制研究进展[J]. 江苏蚕业, 2008, 30(1): 9-14.
[20] 陈展册, 苏丽, 戈峰, 等. 绿盲蝽对性信息素类似物和植物挥发物的触角电位反应[J]. 昆虫学报, 2010, 53(1): 47-54.
[21] 王桂花, 易克贤, 吕宝乾, 等. 斜纹夜蛾对植物挥发物及其与性信息素组合的触角电位反应[J]. 热带作物学报, 2013, 34(3): 524-528.
[22] DENG J Y, HUANG Y P, WEI H Y, et al. EAG and behavioral responses of Helicoverpa armigera males to volatiles from poplar leaves and their combinations with sex pheromone[J]. J Zhejiang Univ Sci, 2004, 5(12): 1577-1582.
[23] 涂小云, 陈元生. 蛾类昆虫行为节律[J]. 生物灾害科学, 2013, 36(1): 18-21.
[24] 宗世祥, 骆有庆, 路常宽, 等. 沙棘木蠹蛾生物学特性的初步研究[J]. 林业科学, 2006, 42(1): 79-84.
[25] 李建勋, 李娟, 程伟霞, 等. 甜菜夜蛾成虫生物学特性研究[J]. 中国农学通报, 2008, 24(5): 318-322.
[26] 李志军. 美国白蛾成虫行为节律研究[J]. 科技信息, 2008 (7): 155, 176.
[27] 何超, 沈登荣, 尹立红, 等. 井上蛀果斑螟虫昼夜行为节律研究[J]. 植物保护, 2016, 42(3): 137-140.
[28] 吴少会, 向群, 薛芳森. 昆虫的行为节律[J]. 江西植保, 2006, 29(4): 147-157.
[29] PERRET M, AUJARD F, SEGUY M, et al. Olfactory bulbectomy modifies photic entrainment and circadian rhythms of body temperature and locomotor activity in a noctural primate[J]. J Biol Rhythm, 2003, 18(5): 392-401.
[30] 周先举, 袁春燕, 杨旭科, 等. 果蝇昼夜节律的分子机制研究进展[J]. 生物化学与生物物理进展, 2005, 32(1): 3-8.
[31] SHIMIZU I, MIURA K. Circadian clock controlling the eclosion rhythm of silkworm Bombyx mori: its characteristics and dynamics[J]. Mem Fac Sci Kyoto Univ, 1987, 12: 135-156.
[32] PITTENDRIGH C S. On temperature independence in the clock controlling emergence time in Drosophlia[J]. Proc Nat Acad Sci U S A, 1954, 40: 1018-1029.
[33] LANKINEN P, FORSMAN P. Independence of genetic geographical variation between photoperiodic diapauses circadian eclosion rhythm and Thr-Gly repeat region of the period gene in Drosophila littoralis[J]. J Biol Rhythm, 2006, 21(1): 3-12.