[1] YANG Z, KLIONSKY D J. Eaten alive: a history of macroautophagy[J]. Nat Cell Biol, 2010, 12(9): 814-822.
[2] 韩笑, 李丹, 林成仁, 等. 自噬研究新进展[J]. 解放军医学杂志, 2010, 35(10): 1267-1269.
[3] YORIMITSU T, KLIONSKY D J. Autophagy: molecular machinery for self-eating[J]. Cell Death Differ, 2005, 12(Suppl 2): 1542-1552.
[4] SALMINEN A, KAARNIRANTA K, KAUPPINEN A. Inflammaging: disturbed interplay between autophagy and inflammasomes[J]. Aging, 2012, 4(3): 166-175.
[5] HUANG J, KLIONSKY D J. Autophagy and human disease [J]. Cell Cycle, 2007, 6(15): 1837-1849.
[6] LIANG C, JUNG J U. Autophagy genes as tumor suppressors[J]. Curr Opin Cell Biol, 2010, 22(2): 226-233.
[7] SARKAR S, RUBINSZTEIN D C. Huntington’s disease: degradation of mutant huntingtin by autophagy[J]. FEBS J, 2008, 275(17): 4263-4270.
[8] TSUKADA M, OHSUMI Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae [J]. FEBS Lett, 1993, 333(1-2): 169-174.
[9] NAKATOGAWA H, SUZUKI K, KAMADA Y, et al. Dynamics and diversity in autophagy mechanisms: lessons from yeast[J]. Nat Rev Mol Cell Biol, 2009, 10(7): 458-467.
[10] YANG Z, KLIONSKY D J. Mammalian autophagy: core molecular machinery and signaling regulation[J]. Curr Opin Cell Biol, 2010, 22(2): 124-131.
[11] EGAN D F, SHACKELFORD D B, MIHAYLOVA M M, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy[J]. Science, 2011, 331 (6016): 456-461.
[12] KIM J, KUNDU M, VIOLLET B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 [J]. Nat Cell Biol, 2011, 13(2): 132-141.
[13] LEE J W, PARK S, TAKAHASHI Y, et al. The association of AMPK with ULK1 regulates autophagy[J]. PLoS One, 2010, 5(11): e15394.
[14] SHANG L B, CHEN S, DU F H, et al. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK [J]. Proc Natl Acad Sci U S A, 2011, 108(12): 4788-4793.
[15] LAGE R, DIEGUEZ C, VIDAL-PUIG A, et al. AMPK: a metabolic gauge regulating whole-body energy homeostasis[J]. Trends Mol Med, 2008, 14(12): 539-549.
[16] TIAN R, MUSI N, D’AGOSTINO J, et al. Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy[J]. Circulation, 2001, 104(14): 1664-1669.
[17] POLEKHINA G, FEIL A, GPUTA A, et al. Crystallization of the glycogen-binding domain of the AMP-activated protein kinase β subunit and preliminary X-ray analysis[J]. Acta Crystallogr Sect Struct Biol Cryst Commun, 2005, 61(Pt 1): 39-42.
[18] LIANG J Y, SHAO S H, XU Z X, et al. The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis[J]. Nat Cell Biol, 2007, 9(2): 218-224.
[19] MIZUSHIMA N. The role of the Atg1/ULK1 complex in autophagy regulation[J]. Curr Opin Cell Biol, 2010, 22(2): 132-139.
[20] CHAN E Y, TOOZE S A. Evolution of Atg1 function and regulation[J]. Autophagy, 2009, 5(6): 758-765.
[21] KAMADA Y, FUNAKOSHI T, SHINTANI T, et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex[J]. J Cell Biol, 2000, 150(6): 1507-1513.
[22] KABEYA Y, KAMADA Y, BABA M, et al. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy[J]. Mol Biol Cell, 2005, 16(5): 2544-2553.
[23] CHANG Y Y, NEUFELD T P. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation[J]. Mol Biol Cell, 2009, 20(7): 2004-2014.
[24] CHAN E Y, KIR S, TOOZE S A. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy[J]. J Biol Chem, 2007, 282(35): 25464-25474.
[25] YOUNG A R J, CHAN E Y, HU X W, et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes[J]. J Cell Sci, 2006, 119(18): 3888-3900.
[26] GWINN D M, SHACKELFORD D B, EGAN D F, et al.AMPK phosphorylation of raptor mediates a metabolic checkpoint[J]. Mol Cell, 2008, 30(2): 214-226.
[27] NOJIMA H, TOKUNAGA C, EGUCHI S, et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif[J]. J Biol Chem, 2003, 278(18): 15461-15464.
[28] INOKI K, ZHU T, GUAN K L. TSC2 mediates cellular energy response to control cell growth and survival[J]. Cell, 2003, 115(5): 577-590.
[29] DENNIS P B, JAESCHKE A, SAITOH M, et al. Mammalian TOR: a homeostatic ATP sensor[J]. Science, 2001, 294(5544): 1102-1105.
[30] BLOMMAART E F, LUIKEN J J, BLOMMAART P J, et al. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes[J]. J Biol Chem, 1995, 270(5): 2320-2326.
[31] CETRULLO S, D’ADAMO S, TANTINI B, et al. mTOR,AMPK, and Sirt1: key players in metabolic stress management[J]. Crit Rev Eukaryot Gene Expr, 2015, 25(1): 59-75.
[32] GONCHAROV D A, KUDRYASHOVA T V, ZIAI H, et al. Mammalian target of rapamycin complex 2 (mTORC2) coordinates pulmonary artery smooth muscle cell metabolism,proliferation, and survival in pulmonary arterial hypertension[J]. Circulation, 2014, 129(8): 864-874.
[33] MAMMUCARI C, MILAN G, ROMANELLO V, et al. FoxO3 controls autophagy in skeletal muscle in vivo[J]. Cell Metab, 2007, 6(6): 458-471.
[34] ZHAO J, BRAULT J J, SCHILD A, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells[J]. Cell Metab, 2007, 6(6): 472-483.
|