[1] SCHEFOLD J C, BIERBRAUER J, WEBER-CARSTENS S. Intensive care unti-acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock[J]. J Cachexia Sarcopenia Muscle, 2010, 1(2): 147-157.
[2] 沈林霞, 郑亚安. ICU-获得性神经肌肉障碍[J]. 中华现代内科学杂志, 2009, 6(2): 104-107.
[3] CONNOLLY B A, JONES G D, CURTIS A A, et al. Clinical predictive value of manual muscle strength testing during critical illness: an observational cohort study[J]. Crit Care, 2013, 17(5): 229.
[4] DE JONGHE B, SHARSHAR T, LEFAUCHEUR J P, et al. Paresis acquired in the intensive care unit: a prospective multicenter study[J]. JAMA, 2002, 288(22): 2859-2867.
[5] SHARSHAR T, BASTUJI-GARIN S, STEVENS R D, et al. Presence and severity of intensive care unit-acquired paresis at time of awakening are associated with increased intensive care unit and hospital mortality[J]. Crit Care Med, 2009,37(12): 3047-3053.
[6] ALI N A, O BRIEN J M, HOFFMANN S P, et al. Acquired weakness, handgrip strength, and mortality in critically ill patients[J]. Am J Respir Crit Care Med, 2008, 178(3): 261-268.
[7] ELLIOTT D, DENEHY L, BERNEY S, et al. Assessing physical function and activity for survivors of a critical illness: a review of instruments[J]. Aust Crit Care, 2011, 24(3): 155-166.
[8] CIESLA N, DINGLAS V, FAN E, et al. Manual muscle testing: a method of measuring extremity muscle strength applied to critically ill patients[J]. J Vis Exp, 2011, 12(50):2632-2636.
[9] WIESKE L, WITTEVEEN E, VERHAMME C, et al. Early prediction of intensive care unit–acquired weakness using easily available parameters: a prospective observational study[J]. PLoS One, 2015, 9(10): 299-307.
[10] BOLTON C F. Neuromuscular manifestations of critical illness[J]. Muscle Nerve, 2005, 32(2): 140-163.
[11] MARSHALL J C. Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome[J]. Crit Care Med, 2001, 29(7): 99-106.
[12] PUTHUCHEARY Z A, RAWAL J, MCPHAIL M, et al. Acute skeletal muscle wasting in critical illness[J]. JAMA, 2013, 310 (15):1591-1600.
[13] LATRONICO N, BOLTON C F. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis[J]. Lancet Neurol, 2011, 10(1): 931-941.
[14] KHAN J, HARRISON T B, RICH M M, et al. Early development of critical illness myopathy and neuropathy in patients with severe sepsis[J]. Neurology, 2006, 67(8): 1421-1425.
[15] LATRONICO N, SHEHU I, GUARNERI B. Use of electrophysiologic testing[J]. Crit Care Med, 2009, 37(2): 316-320.
[16] NOVAK K R, NARDELLI P, COPE T C, et al. Inactivation of sodium channels underlies reversible neuropathy during critical illness in rats[J]. J Clin Invest, 2009, 119(5): 1150-1158.
[17] PUTHUCHEARY Z, HARRIDGE S, HART N. Skeletal muscle dysfunction in critical care: wasting, weakness, and rehabilitation strategies[J]. Crit Care Med, 2010, 38(10):676-682.
[18] HOUGH C L, LIEU B K, CALDWELL E S. Manual muscle strength testing of critically ill patients: feasibility and interobserver agreement[J]. Crit Care, 2011, 15(1): 43-49.
[19] VANPEE G, HERMANS G, SEGERS J, et al. Assessment of limb muscle strength in critically ill patients: a systematic review[J]. Crit Care Med, 2014, 42(3): 701-711.
[20] BRUNNER R, RINNER W, HABERLER C, et al. Early treatment with IgM-enriched intravenous immunoglobulin does not mitigate critical illness polyneuropathy and/or myopathy in patients with multiple organ failure and SIRS/sepsis: a prospective, randomized, placebo-controlled, double-blinded trial[J]. Crit Care, 2013, 17(5): R213.
[21] ERBAS O, YENIEL A O, AKDEMIR A, et al. The beneficial effects of levetiracetam on polyneuropathy in the early stage of sepsis in rats: electrophysiological and biochemical evidence[J]. J Invest Surg , 2013, 26(6): 312-318.
[22] ERBAS O, ERGENOGLU A M, AKDEMIR A, et al. Comparison of melatonin and oxytocin in the prevention of critical illness polyneuropathy in rats with experimentally induced sepsis[J]. J Surg Res, 2013, 183(1): 313-320.
|