XIAO Fanglan,LV Panpan,YAN Xijuan, et al. The establishment of a specific E.coli for detection of mercury (II) ions[J]. JOURNAL OF WEZHOU MEDICAL UNIVERSITY, 2015, 45(7): 474-.
Abstract:Objective: To construct a specific biosensor to detect mercury ions using the enhanced cyan fluorescent protein as a reporter. Methods: The fusion reporter vector, merR-O\P-ecfp-T, was constructed using ecfp as reporter gene. Then the reporter vector merR-O\P-ecfp-T was transformed into Escherichia coli MC4100 wide type strain. The growth conditions optimization of this completed biosensor and its specificity and the optimum detection range parameters were determined. Results: The results showed that the mercury biosensor had a good specificity, the optimal detection range of mercury concentration was 0.15-38.4 μmol/L. A specific biosensor were successfully constructed to detect mercury ions. Conlusion: The work provides the foundation for developing other hypersensitive biosensors for the chemicals such as explosives, polycyclic aromatic hydrocarbons, polychlorinated hydrocarbons and heavy metals that are important to national security, human health, environment, energy supply and food safety.
[1] 党民团, 刘娟. 中国汞污染的现状及防治对策[J]. 应用化工, 2005, 34(7): 394-396.
[2] 冯新斌, 仇广乐, 付学吾, 等. 环境汞污染[J]. 化学进展, 2009, 21(2-3): 436-457.
[3] 王宏, 徐智. 汞在环境中的污染和迁移转化[J]. 内蒙古环境保护, 2000, 12(1): 46-47.
[4] Dash HR, Das S. Bioremediation of mercury and the importance of bacterial mer genes[J]. Int Biodeter Biodegr, 2012,75(6): 207-213.
[5] 张银玲, 龙燕, 罗仙平, 等. 环境汞污染及研究动态[J]. 有色冶金设计与研究, 2012, 33(4): 65-68.
[6] 许妍, 陈永青. 我国环境汞污染现状及其对健康的危害[J].职业与健康, 2012, 28(7): 879-881.
[7] 孙维萍, 潘建明, 翁焕新, 等. 环境样品中甲基汞的检测方法综述[J]. 海洋学研究, 2010, 28(2): 45-51.
[8] 余若祯, 王红梅, 方征, 等. 重金属离子快速检测技术研究与应用进展[J]. 环境工程技术学报, 2011, 1(5): 438-442.
[9] 莫洁芳, 韩英. 水环境中汞离子检测技术研究进展[J]. 现代仪器, 2010, (3): 14-17.
[10] Barkay T, Miller SM, Summers AO. Bacterial mercury resistance from atoms to ecosystems[J]. FEMS Microbiol Rev, 2003, 27(2-3): 355-384.
[11] Hamlett NV, Landale EC, Davis BH, et al. Roles of the Tn21 merT, merP, and merC gene products in mercury resistance and mercury binding[J]. J Bacteriol, 1992, 174(20): 6377-6385.
[12] Murtaza I, Dutt A, Ali A. Relationship between the persistence of mer operon sequences in Escherichia coli and their resistance to mercury[J]. Curr Microbiol, 2002, 44(3): 178-183.
[13] Nagata T, Muraoka T, Kiyonoa M, et al. Development of a luminescence-based biosensor for detection of methylmercury[J]. J Toxicol Sci, 2010, 35(2): 231-234.
[14] Wilson JR, Leang C, Morby AP, et al. MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters?[J]. FEBS Lett, 2000,472(1): 78-82.
[15] Schelert J, Rudrappa D, Johnson T, et al. Role of merH in mercury resistance in the archaeon Sulfolobus solfataricus [J]. Microbiology, 2013, 159(Pt 6): 1198-1208.
[16] Ellenberg J, Lippincott-Schwartz J, Presley JF. Dual-colour imaging with GFP variants[J]. Trends Cell Biol, 1999, 9(2): 52-56.
[17] Priyadarshi H, Alam A, Gireesh-Babu P, et al. A GFP-based bacterial biosensor with chromosomally integrated sensing cassette for quantitative detection of Hg(II) in environment[J]. J Environ Sci, 2012, 24(5): 963-968.
[18] Nucifora G, Chu L, Silver S, et al. Mercury operon regulation by the merR gene of the organomercurial resistance system of plasmid pDU1358[J]. J Bacteriol, 1989, 171(8):4241-4247.
[19] He W, Han C, Mao T, et al. A chromosomally based luminescent bioassay for mercury detection in red soil of China [J]. Appl Microbiol Biotechnol, 2010, 87(3): 981-989.
[20] Gireesh-Babu P, Chaudhari A. Development of a broad-spectrum fluorescent heavy metal bacterial biosensor[J].Mol Biol Rep, 2012, 39(12): 11225-11229.
[21] Tao H, Peng Z, Li P, et al. Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR[J]. Biotechnol Lett, 2013, 35(8): 1253-1258.