[1] World Health Organization. Obesity and overweight[EB/OL]. (2019-01-20)[2018-02-16]. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
[2] JAACKS L M, VANDEVIJVERE S, PAN A, et al. The obesity transition: stages of the global epidemic[J]. Lancet Diabetes Endocrinol, 2019, 7(3): 231-240.
[3] NEISH A S. Microbes in gastrointestinal health and disease [J]. Gastroenterology, 2009, 136(1): 65-80.
[4] TREMAROLI V, BACKHED F. Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012, 489(7415): 242-249.
[5] BOULANGE C L, NEVESA L, CHILLOUX J, et al. Impact of the gut microbiota on inflammation, obesity, and metabolic disease[J]. Genome Med, 2016, 8(1): 42.
[6] RIDAURA V K, FAITH J J, REY F E, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice[J]. Science, 201, 341(6150): 1241214.
[7] LE R T, LLOPIS M, LEPAGE P, et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice[J]. Gut, 2013, 62(12): 1787-1794.
[8] LEY R E, TURNBAUGH P J, KLEIN S, et al. Microbial ecology: human gut microbes associated with obesity[J]. Nature, 2006, 444(7122): 1022-1023.
[9] TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1031.
[10] LE C E, NIELSEN T, QIN J, et al. Richness of human gut microbiome correlates with metabolic markers[J]. Nature, 2013, 500(7464): 541-546.
[11] DAVID L A, MAURICE C F, CARMODY R N, et al. Diet rapidly and reproducibly alters the human gut microbiome [J]. Nature, 2014, 505(7484): 559-563.
[12] CLEMENTE J C, URSELL L K, PARFREY L W, et al. The impact of the gut microbiota on human health: an integrative view[J]. Cell, 2012, 148(6): 1258-1270.
[13] MUEGGE B D, KUCZYNSKI J, KNIGHTS D, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans[J]. Science, 2011, 332(6032): 970-974.
[14] THORBURN A N, MACIA L, MACKAY C R, et al. Diet, metabolites, and ‘‘western-lifestyle’’ inflammatory diseases [J]. Immunity, 2014, 40(6): 833-842.
[15] ZMORA N, SUEZ J, ELINAV E. You are what you eat: diet, health and the gut microbiota[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(1): 35-56.
[16] CANI P D, AMAR J, IGLESIAS M A, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56(7): 1761-1772.
[17] CANI P D, NEYRINCK A M, FAVA F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia[J]. Diabetologia, 2007, 50(11): 2374-2383.
[18] Hehemann J H, Correc G, Barbeyron T, et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota[J]. Nature, 2010, 464(7290): 908-912.
[19] SALTIEL A R. New therapeutic approaches for the treatment of obesity[J]. Sci Transl Med, 2016, 8(323): 323rv2.
[20] DENOU E, MARCINKO K, SURETTE M G, et al. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity[J]. Am J Physiol Endocrinol Metab, 2016, 310(11): E982-E993.
[21] 李文玉. 8周有氧运动对青年肥胖者血脂的调节作用及对其肠道菌群的影响[D]. 济南: 山东体育学院, 2018.
[22] CLARKE S F, MURPHY E F, OSULLIVAN O, et al. Exercise and associated dietary extremes impact on gut microbial diversity[J]. Gut, 2014, 63(12): 1913-1920.
[23] LAMBERT J E, MYSLICKI J P, BOMHOF M R, et al. Exercise training modifies gut microbiota in normal and diabetic mice[J]. Appl Physiol Nutr Metab, 2015, 40(7): 749-752.
[24] HAMASAKI H. Exercise and gut microbiota: clinical implications for the feasibility of Tai Chi[J]. J Integr Med, 2017, 15(4): 270-281.
[25] 沈焕玲, 张莹. 肥胖的饮食和药物治疗的研究现状[J]. 医学综述, 2018, 24(10): 1998-2003.
[26] DE J C, FUENTE S S, ZOETENDAL E, et al. Metabolic improvement in obese patients after duodenal-jejunal exclusion is associated with intestinal microbiota composition changes[J]. Int J Obes (Lond), 2019. doi: 10.1038/s41366-019-0336-x.
[27] LIOU A P, PAZIUK M, LUEVANO J M JR, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity[J]. Sci Transl Med, 2013, 5(178): 178ra41.
[28] WOODARD G A, ENCARNACION B, DOWNEY J R, et al.
Probiotics improve outcomes after Roux-en-Y gastric bypass surgery: a prospective randomized trial[J]. J Gastrointest Surg, 2009, 13(7): 1198-1204.
[29] MURPHY R, TSAI P, JÜLLIG M, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission[J]. Obes Surg, 2017, 27(4): 917-925.
[30] MELL B, JALA V R, MATHEW A V, et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat [J]. Physiol Genomics, 2015, 47(6): 187-197.
[31] EBEL B, LEMETAIS G, BENEY L, et al. Impact of probiotics on risk factors for cardiovascular diseases. A review[J]. Crit Rev Food Sci Nutr, 2014, 54(2): 175-189.
[32] KIM M S, HWANG S S, PARK E J, et al. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation[J]. Environ Microbiol Rep, 2013, 5(5): 765-775.
[33] SUÁREZ Z N, FABBIANO S, CHEVALIER C, et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity[J]. Nat Med, 2015, 21(12): 1497-1501.
[34] CAPURSO L, MORELLI L. Probiotics and European food safety authority health claims[J]. J Clin Gastroenterol, 2010, 44(suppl 1): S1.
[35] KADOOKA Y, SATO M, IMAIZUMI K, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial[J]. Eur J Clin Nutr, 2010, 64(6): 636-643.
[36] AN H M, PARK S Y, LEE D K, et al. Antiobesity and lipid-lowering effects of Bifidobacterium spp. In high fat diet-induced obese rats[J]. Lipids Health Dis, 2011, 10: 116.
[37] KIM M, FURUZONO T, YAMAKUNI K, et al. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1[J]. FASEB J, 2017, 31(11): 5036-5048.
[38] PARK S, JI Y, JUNG H Y, et al. Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model[J]. Appl Microbiol Biotechnol, 2017, 101(4): 1605-1614.
[39] PINEIRO M, ASP N G, REID G, et al. FAO technical meeting on prebiotics[J]. J Clin Gastroenterol, 2008, 42(suppl 3): S156-S159.
[40] EREJUWA O, SULAIMAN S, WAHAB M, et al. Modulation of gut microbiota in the management of metabolic disorders: the prospects and challenges[J]. Int J Mol Sci, 2014, 15(3): 4158-4188.
[41] CANI P D, LECOURT E, DEWULF E M, et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal[J]. Am J Clin Nutr, 2009, 90(5): 1236-1243.
[42] PARNELL J A, REIMER R A. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults[J]. Am J Clin Nutr, 2009, 89(6): 1751-1759.
[43] ZHANG F, LUO W, SHI Y, et al. Should we standardize the 1700-year-old fecal microbiota transplantation[J]. Am J Gastroenterol, 2012, 107(11): 1755.
[44] GÓMEZ-JUARISTI M, MARTÍNEZ-LÓPEZ S, SARRIA B,
et al. Absorption and metabolism of yerba mate phenolic compounds in humans[J]. Food Chem, 2018, 240: 1028-1038.
[45] DE GROOT P F, FRISSEN M N, DE CLERCQ N C, et al. Fecal microbiota transplantation in metabolic syndrome: History, present and future[J]. Gut Microbes, 2017, 8(3): 253-267.