Anti-gastric cancer activity of novel IKKβ inhibitor in vitro
BAO Miao1, HUANG Chongxian1, HU Jun1, ZHU Lu2, WEI Tao2, CHEN Xiaoming1
1.Department of Pediatric Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; 2.School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
BAO Miao,HUANG Chongxian,HU Jun, et al. Anti-gastric cancer activity of novel IKKβ inhibitor in vitro[J]. JOURNAL OF WEZHOU MEDICAL UNIVERSITY, 2019, 49(6): 397-400,407.
摘要目的:探究新型EF24类IKKβ激酶抑制剂H18的体外抗胃癌活性。方法:利用分子对接模拟H18与IKKβ的结合模式;利用MTT实验检测H18对胃癌细胞BGC-823抑制生长的作用;集落克隆实验检测H18对BGC-823增殖的影响;利用DAPI染色检测细胞凋亡情况;利用Western blot实验分析H18对胃癌细胞BGC-823的NF-κB信号通路的影响。结果:H18可与IKKβ的变构位点结合;H18对BGC-823细胞72 h IC50为(1.7±0.3)μmol/L;与IKK抑制剂BMS-345541相比,H18明显抑制细胞的增殖,而对凋亡无明显影响;H18可对胃癌细胞NF-κB信号通路产生明显抑制作用。结论:H18具有良好的体外抗胃癌活性,是一种具有研发前景的IKKβ抑制剂。
Abstract:Objective: To investigate the anti-gastric cancer activity of novel IKKβ inhibitor EF24 analog H18 in vitro. Methods: Molecular docking is used to simulate the binding of H18 and IKKβ. MTT assay was used to detect the effect of H18 on the growth of gastric cancer cell line BGC-823. The clonogenicity assay was employed to investigate the role of H18 in the colony formation ability of BGC-823. Cells apoptosis was observed by DAPI staining. The inhibition of the NF-κB signaling pathway was verified by Western blot. Results: H18 binds to the allosteric site of IKKβ. The IC50 of H18 to BGC-823 cells was (1.7±0.3) μmol/L at 72 h. Compared with IKK inhibitor BMS-345541, H18 significantly inhibited cell proliferation, but had no effect on apoptosis. H18 can inhibit significantly NF-κB signaling pathway in gastric cancer cells. Conclusion: H18 is a promising IKKβ inhibitor with good anti-tumor activity in vitro.
[1] 李道娟, 梁迪, 靳晶, 等. 上消化道恶性肿瘤流行病学趋势[J]. 肿瘤预防与治疗, 2018, 31(1): 62-68.
[2] 张艳兵, 屠洋洋, 叶孙志, 等. DOF和DOX方案治疗不可切除晚期胃癌的不良反应的对比分析[J]. 温州医科大学学报, 2016, 46(1): 60-64.
[3] 张勇, 王世垚, 胡欢, 等. DCF方案新辅助化疗在胃癌中的应用进展[J]. 西北国防医学杂志, 2019, 40(3): 186-190.
[4] SONG Z, WU Y, YANG J, et al. Progress in the treatment of advanced gastric cancer[J]. Tumour Biol, 2017, 39(7): 1010428317714626.
[5] 魏晓炎, 侯乐萍. NF-κB-IKKβ通路作为药物开发靶点的研究现状[J]. 现代医药卫生, 2018, 34(19): 2992-2995.
[6] ZHU Y, ZHOU Y, ZHOU X, et al. S100A4 suppresses cancer stem cell proliferation via interaction with the IKK/NF-kappaB signaling pathway[J]. BMC Cancer, 2018, 18(1): 763.
[7] AWASTHEE N, RAI V, CHAVA S, et al. Targeting IkappaappaB kinases for cancer therapy[J]. Semin Cancer Biol, 2018. pii: S1044-579X(17)30046-9.
[8] PRESCOTT J A, COOK S J. Targeting IKKbeta in cancer: challenges and opportunities for the therapeutic utilisation of IKKbeta inhibitors[J]. Cells, 2018, 7(9). pii: E115.
[9] Jin R, Chen Q, Yao S, et al. Synthesis and anti-tumor activity of EF24 analogues as IKKbeta inhibitors[J]. Eur J Med Chem, 2018, 144: 218-228.
[10] FARRAN B, MULLER S, MONTENEGRO R C. Gastric cancer management: Kinases as a target therapy[J]. Clin Exp Pharmacol Physiol, 2017, 44(6): 613-622.
[11] LEAL A D, KRISHNAMURTHY A, HEAD L, et al. Antibody drug conjugates under investigation in phase I and phase II clinical trials for gastrointestinal cancer[J]. Expert Opin Investig Drugs, 2018, 27(11): 901-916.
[12] LIU H, SONG J, ZHOU Y, et al. Methylxanthine derivatives promote autophagy in gastric cancer cells targeting PTEN [J]. Anticancer Drugs, 2019, 30(4): 347-355.
[13] FUKAMACHI H, KIM S K, KOH J, et al. A subset of diffuse-type gastric cancer is susceptible to mTOR inhibitors and checkpoint inhibitors[J]. J Exp Clin Cancer Res, 2019, 38(1): 127.
[14] WANG X, KAN J, HAN J, et al. LncRNA SNHG16 functions as an oncogene by sponging MiR-135a and promotes JAK2/STAT3 signal pathway in gastric cancer[J]. J Cancer, 2019, 10(4): 1013-1022.
[15] WANG J, SUN Z, YAN S, et al. Effect of miR145 on gastric cancer cells[J]. Mol Med Rep, 2019, 19(5): 3403-3410.
[16] 应江辉, 蒋佩佩, 金灿灿, 等. microRNA-212对胃癌细胞系SGC7901迁移和侵袭能力的影响[J]. 温州医科大学学报, 2016, 46(9): 644-648.
[17] PING H, YANG F, WANG M, et al. IKK inhibitor suppresses epithelial-mesenchymal transition and induces cell death in prostate cancer[J]. Oncol Rep, 2016, 36(3): 1658-1664.
[18] ANTONIA R J, BALDWIN A S. IKK promotes cytokine-induced and cancer-associated AMPK activity and attenuates phenformin-induced cell death in LKB1-deficient cells[J]. Sci Signal, 2018, 11(538): eaan5850.
[19] VREKA M, LILIS I, PAPAGEORGOPOULOU M, et al. IkappaB kinase alpha is required for development and progression of KRAS-mutant lung adenocarcinoma[J]. Cancer Res, 2018, 78(11): 2939-2951.
[20] YIN D L, LIANG Y J, ZHENG T S, et al. EF24 inhibits tumor growth and metastasis via suppressing NF-kappaB dependent pathways in human cholangiocarcinoma[J]. Sci Rep, 2016, 6: 32167.
[21] CHEN L, LI Q, ZHENG Z, et al. Design and optimize N-substituted EF24 as effective and low toxicity NF-kappaB inhibitor for lung cancer therapy via apoptosis-to-pyroptosis switch[J]. Chem Biol Drug Des, 2019. doi: 10.1111/cbdd. 13514.
[22] CHEN L, LI Q, WENG B, et al. Design, synthesis, anti-lung cancer activity, and chemosensitization of tumor-selective MCACs based on ROS-mediated JNK pathway activation and NF-kappaB pathway inhibition[J]. Eur J Med Chem, 2018, 151: 508-519.
[23] WU J, WU S, SHI L, et al. Design, synthesis, and evaluation of asymmetric EF24 analogues as potential anti-cancer agents for lung cancer[J]. Eur J Med Chem, 2017, 125: 1321-1331.